

High Standard Pipe[®] uPVC & PVC Pipes Catalogue

High Standard Pipe

High Standard Pipe

High Standard Pipe

Company Profile

	ORY OFEXCELLENCE ge of HSP Pipes	3 4
-	mical Resistance	5
Part I	: The Products	0
1.	BRITISH STANDARD	
	1.1 uPVC Underground & Sewer Pipe. (BS 4660)	6
	1.2 uPVC Electrical Conduit (BS 6099)	7
	1.3 uPVC Pressure (Water supply, irrigation & Indu	
2.	DIN STANDARD	
	2.1 uPVC Drain Pipe (above ground) DIN 19531	11
	2.2 uPVC Pressure Pipe DIN 8061/62	2 12
	2.3 uPVC Sewer Pie (gravity) DIN 19534	13
3.	NEMA STANDARD	
	3.1 uPVC Electrical Conduit NEMA TC-2,	
	NEMA TC-6-8 & ANSI-ul	14
4.	ASTM STANDARD	
	4.1 ASTM D 1785, ASTM D 2665	16
_	4.2 ASTM D 2241	20
5.	PVC Pipe Physical Properties	21
PART II		
1.	INSTALLATION & DESIGN GUIDELINES—JOINTIN	
0	1.1 Using Solvent Cement	22
2.	UNDERGROUND INSTALLATION	22
	2.1 General Requirements	23 25
	2.2 Trench Preparation & Bending2.3 Gravity Sewer	20
	2.4 Pressure Pipe	20
3.	DESIGN ASPECTS	21
0.	3.1 Expansion Loops	28
	3.2 Flow & Friction	29
	3.3 uPVC pipe at Elevated Temperatures	30
	STORAGE & HANDLING	31
4.	CONVERSION FACTORS	32

The High Standard Pipe (HSP) is a fine example of how success can be achieved when a company is committed to excellence in every area of its operations.

Be it a new product launch, human resources development, investment in the latest technologies, upgrading of manufacturing facilities, formulation of policies and procedures, creation of healthy work environment or attending to a customer's needs, the goal of HSP has always been the same. HSP has committed to providing its customers with quality products and services that satisfies their realistic requirements.

Excellence in Products:

HSP manufactures and supplies uPVC pipe for Soil, Waste, Duct, Conduit and underground applications; Polyethylene pipes for irrigation and potable water distribution for residential and commercial buildings; pressure pipes for cold water supply, agricultural and industrial applications. HSP also offers electrical conduit and cable duct pipes as well as sewerage pipes. These products are manufactured to meet various international quality standards.

HSP stocks and supplies a range of uPVC fittings and joining materials which complement the various pipe systems.

Excellence in meeting international standards

Proof of HSP's commitment to quality can be seen from the fact that its products meet the high internationally recognized standards of manufacture. These Standard's include BS, ASTM, DIN, NEMA and AS specifications.

Excellence in human resources

HSP takes pride in its team of highly experienced and skilled professionals. The team is committed to providing efficient and cost-effective solutions for customers backed by reliable after-sales support.

High Standard Pipe High Standard

HSP has continuous in-house training programes to update the skills of its professionals so that they continue to perform to they very high standards expected of them.

Excellence in infrastructure

HSP developed a very sophisticated manufacturing facility and the company constantly invests in the latest advancements in technology. These investments not only ensure superior products for our customers but also enhance our leadership position in the region.

The company's laboratory is one of the best in the region and is equipped with modern testing apparatus. The company's products are quality tested by independent labs from PAK, UK, and USA to meet the expected high international standards.

HSP also has a well-equipped workshop with skilled technician to fabricate both conventional PVC fittings as well as other specific requirements of customers.

Excellence through customer satisfaction

We say the customer is the best judge. HSP is proud to have a long list of satisfied customers, most of them engaged in the key sectors of developing Afghanistan's economy and infrastructure. The customers include UNICEF, DACAAR, US Corps, Ministry of Water & Power, Ministry of Urban Development and PRT.

Excellence in the future

HSP is committed to sta at the forefront of the plastic pipes industry in the region. The company shall continue to expand, further enhance its products, invest in quality human resources as well as technology and continue its unwavering commitment to the customer.

PRESSURE PIPES:

ASTM -D 1785-94 Sch. 40, Sch. 80 and Sch. 120

ASTM D-2241 SDR Series

BS-3505-86 Class B, C, D and E

NON - PRESSURE PIPE :

BS - 3505 Class O

DIN 19534

SEWERAGE, SOIL & DRAIN:

ASTM D-2664 DWV

DIN 19531

BS 5255 THERMOPLASTIC WASTE PIPE

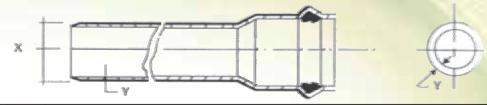
BS 4514 Soil and Ventilization

BS 4660 & 5481 Underground Sewerage

ELECTRIC CONDUIT:

NEMA TC-2, TC-4, TC-6, TC-8, ASTM F 512, ANSI/UL 651a BS - 6099

CHEMICAL RESISTANCE OF HSP PVC & uPVC PIPES:


PVC & uPVC Pipes are highly resistant to salt water acids and alkalis. It is not recommended for use with organic ester, ketones, chlorinated solvents aromatic hydrocarbon and low molecular weight alcohols.

Resistance of PVC & uPVC Pipes to common chemicals under the conditions.

Mineral Acids	Hydrophlaric Acid 20%	
wineral Acids	Hydrochloric Acid 30%	+
	Sulphuric Acid 50%	+
	Sulphuric Acid 98%	+
Alkalis	Ammonium Hydroxide	+
	Calcium Hydroxide	+
	Sodium Hydroxide	+
Salts	Calcium Chloride	+
	Potassium Chloride	+
	Sodium Bicarbonate	+
	Sodium Chloride	+
	Sodium Phosphate	+
	Sodium Sulphate	+
Oxidizing Agents / Disinfectants	Sodium Hydrochloride (Bleach Solution)	+
	Chlorine Water	+
	Calcium Hypochlorite – Soln. 18%	+
Organic Acids	Acetic Acid – 10%	+
	Citric Acid 25%	+
	Hydroxyl Acetic Acid	+
Oil & Derived Products	Diesel Fuel	+
	Gasoline	+
	Lubricating & Thread Cutting Oils	+
	Motor Oil	+
		1999
Solvents	Acetone	-
	Methyl ketone	
	Toluene	1
	Trichloroethylene	-
	Turpentine	+
	Xylene	-
	Soaps & Detergents	+
Gases	Ammonia	
	Carbon Dioxide	
	Natural Gas	
	Oxygen	

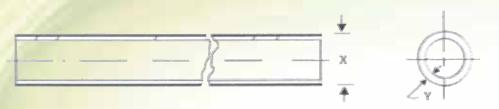
1.1 uPVC Underground & Sewer Pipe

		BS 4660							
Nominal Size	Outside Diam	neter (X) mm	Wall T <mark>hickness (Y) mm</mark>						
mm	Minimum	Maximum	Minimum	Maximum					
110 (4")	110.0	110.4	3.2	3.8					
160 (6")	160.0	160.6	4.1	4.8					

		BS 5481							
Nominal Size	Outside Dian	neter (X) mm	Wall Thickness (Y) mm						
mm	Minimum	Maximum	Minimum	Maximum					
200	200.0	200.6	4.9	5.6					
250	250.0	250.7	6.1	7.0					
315	315.0	315.9	7.7	8.7					
400	400.0	401.0	9.8	11.0					

Manufactured to	: BS 4660 -(110) 4" (160) 6"
	: BS 5481
Standard length	: 5.8 & 6 meters
Colour	: Golden Brown
Socket type	: Solvent weld, Rubber Seal Ring & Plain-end

Note:


1. All commonly used dimensions normally ex-stock delivery for other sizes on request.

2. A wide range of compatible fittings manufactured to DIN 19534 are available.

3. A wide range of compatible fittings manufactured to BS 4660 by UK is available .

1.2 uPVC Electrical Conduit

111	B	S – 6099						
	HSP uPVC &	PVC Electric	Conduit					
Nominal Size	Outer Dian	Wall Thickness (mm)						
Inch	Min.	Max.	Min.	Max				
1/2	17.0	17.3	0.96	1.16				
3/4	21.2	21.5	1.09	1.29				
1	26.6	26.9	1.16	1.36				
1 1/4	33.4	33.7	1.44	1.67				
1 1/2	42.1	42.4	1.60	1.84				
2	60.2	60.5	1.70	1.90				
3	88.7	89.1	1.80	2.00				
4	114.1	114.5	1.90	2.10				

1. Non-standard lengths and colors can be manufactured to meet customer's exact requirements.

TECHNICAL SPECIFICATIONS

	q		F	15-0		X		10	~	0	2	10	10	0	4	4	5	5	-	9	9	0			
I					bar	Max	2.1	2.5	2.7	3.2	3.7	4.5	5.5	6.6	8.4	10.4	12.5	14.5	18.1	21.6	23.6	27.0	•		1
S	_			Class E	q	Min	1.7	1.9	2.2	2.7	3.1	3.9	4.8	5.7	7.3	0.6	10.8	12.6	15.7	18.7	20.5	23.4			
	/ 3506			12-0	bar	Мах				3.2	3.0	3.7	4.5	5.3	6.9	8.4	10.2	11.9	14.8	17.5	19.2	21.9	24.6		
	3505/		Wall Thickness (S)	Class D	q	Min				2.2	2.5	3.1	3.9	4.6	6.0	7.3	8.8	10.3	12.8	15.2	16.7	19.0	21.4		
	BSS		Wall Thic	0-6	bar	Max						3.0	3.5	4.1	5.2	6.4	7.6	9.0	11.2	13.3	14.5	16.7	18.8	20.9	25.0
				Class C	ġ	Min						2.5	3.0	3.5	4.5	5.5	6.6	7.8	9.7	11.5	12.6	14.5	16.3	18.1	217
[nse		0-9	bar	Мах								3.4	4.0	4.4	5.2	6.1	7.6	9.0	9.8	11.2	12.7	14.1	16.8
	lard			Class B	q	Min								2.9	3.4	3.8	4.5	5.3	9.9	7.8	8.5	9.7	11.0	12.2	14.6
	standarc			Outside Diameter		Max	21.5	26.9	33.7	42.4	48.4	60.5	75.3	89.1	114.5	140.4	168.5	219.4	273.4	324.3	356.0	406.9	457.7	508.5	6101
British	S					Min	21.2	26.6	33.4	42.1	48.1	60.2	75.0	88.7	114.1	140.0	168.0	218.8	272.6	323.4	355.0	405.9	456.7	507.5	609 1
				Nominal Size		Inches	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"	5"	6"	8"	10"	12"	14"	16"	18"	20"	24"

1.3 uPVC Pressure (water supply, irrigation & industrial use) BS 3505 / 3506

	1100		Wall Thickness (S)													
Nominal Size	Outside	Diameter	Clas	ss O	Clas	ss 6	Class 7									
Inches	Min	Max	<mark>k Min Max</mark>		Min	Max	Min	Max								
1/2"	21.2	21.5			2.8	3.3	3.7	4.3								
3/4"	<mark>26.</mark> 6	26.9			2.9	3.4	3.9	4.5								
1"	33.4	33.7			3.4	4.0	4.5	5.2								
1 1/4"	<mark>42.</mark> 1	42.4			3.6	4.2	4.8	5.5								
1 1⁄2"	<mark>48.1</mark>	48.4			3.7	4.3	5.1	5.9								
2"	60.2	60.5	1.8	2.2			5.5	6.3								
2 1⁄2"	75.0	75.3	1.8	2.2												
3"	<mark>8</mark> 8.7	89.1	1.8	2.2												
4"	114.1	114.5	1.8	2.2												
6"	140.0	140.4	2.3	2.8												
8"	168.0	168.5	3.1 3.7													
10"	218.8	219.4	3.1	3.7												

Pressure ratings

: Designated by the different classes at 20° C

Class	'B'	ʻC'	'D'	'E'	'O'
Bar	6	9	12	15	Non Pressure

Note : 2% of rated pressure should be reduced for each 1°C rise above 20°C

Pressure Rating Bar												
Size-inch	Size-inch Class '6' Cla											
1/2	28	40										
3/4	22	32										
1	24	32										
1 1/4	20	28										
1 ½	18	25										
2	-	22										

Manufactured to	: BS 3505 / 3506 Classes B, C, D &E, BS 3506, 1969 Classes O, 6 & 7
Standard length	: 5.8 and 6 meters
Color	: Dark gray (except Class O which is white)
Socket type	: Solvent weld
Note:	: Plain-end

1. A wide range of compatible fittings manufactured to BS 4346 part 1

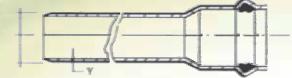
1.3 uPVC Pressure (water supply, irrigation & industrial use)

APPROXIMATE WEIGHTS OF PVC PIPE PER METER

High Standard

Pipe

Class - 7	Kg/m	0.20	0.30	0.41	0.60	0.84	1.02	1.42		•											•			•
Class - E	Kg/m	0.11	0.16	0.22	0.32	0.50	0.65	1.02	1.57	2.20	3.61	5.47	7.89	10.41	12.08	15.06	18.75	26.48	31.88	41.61		•		
Class - D	Kg/m	•	•	•	•	0.41	0.54	0.82	1.29	1.81	3.01	4.49	6.52	8.60	9.97	12.46	15.47	21.76	26.27	34.15	43.33	•	•	•
Class - C	Kg/m	•		•	•	•	•	0.68	1.01	1.40	2.31	3.45	4.97	6.66	7.66	9.54	11.86	16.71	20.09	26.43	33.34	41.16	49.80	59.27
Class - B	Kg/m	•	•			•		•		1.18	1.77	2.41	3.44	4.55	5.25	6.54	8.19	11.47	13.74	17.90	22.80	28.08	34.02	40.41
Nominal Size	Inches	3/8	1/2	3/4	1	1 1/4	1 1/2	2	2 1/2	S	4	5	9	7	8	6	10	12	14	16	18	20	22	24



2.1 uPVC Drain Pipe (above ground)

	DIN 19531											
Nominal Size	Mean Outside I	Diameter (X) mm	Wall Thickness (Y) mm									
mm	Minimum	Maximum	Minimum	Maximum								
40	40.0	40.2	1.8	2.2								
<mark>5</mark> 0	50.0	50.2	1.8	2.2								
75	75.0	75.3	1.8	2.2								
110	110.0	110.3	2.2	2.7								
160	160.0	160.4	3.2	3.8								

Manufactured to	: DIN 19531
Standard length	: 4,5.8 & 6 metres
Colour	: Gray
Socket type	: Plain-end, Solvent Weld or Rubber Seal Ring (75mm and above)

Note:

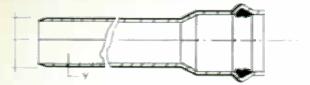
All commonly used dimensions normally available, delivery for other sizes on request.

2.2 uPVC Pressure Pipe

	uPVC Pipe DIN 8061 / 62:19532													
							Ser	ries						
Nominal		tside meter		1		2		3	4	L I	ę	5		
Size mm			W.T.		w	W.T.		W.T.		.Т.	W.T.			
	Min mm	Max mm	Min mm	Max mm	Min mm	Max mm	Min Max mm mm		Min mm	Max mm	Min mm	Max mm		
20	20	20.2									1.5	1.9		
25	25	25.2							1.5	1.9	1.9	2.3		
32	32	32.2							1.8	2.2	2.4	2.9		
40	40	40.2					1.8	2.2	1.9	2.3	3.0	3.5		
50	50	50.2					1.8	2.2	2.4	2.9	3.7	4.3		
63	63	63.2					1.9	2.3	3.0	3.5	4.7	5.4		
75	75	75.3			1.8	2.2	2.2	2.7	3.6	4.2	5.6	6.4		
90	90	90.3			1.8	2.2	2.7	3.2	4.3	5.0	6.7	7.6		
110	110	110.3	1.8	2.2	2.2	2.7	3.2	3.8	5.3	6.1	8.2	9.3		
160	160	160.4	1.8	2.2	3.2	3.8	4.7	5.4	7.7	8.7	11.9	13.3		
200	200	200.4	1.8	2.2	4.0	4.6	5.9	6.7	9.6	10.8	14.9	16.6		
225	225	225.5	1.8	2.2	4.5	5.2	6.6	7.5	10.8	12.1	16.7	18.6		
250	250	250.5	2.0	2.4	4.9	5.6	7.3	8.3	11.9	13.3	18.6	20.7		
280	<mark>28</mark> 0	280.6	2.3	2.8	5.5	6.3	8.2	9.3	13.4	15.0	20.8	23.1		
315	315	315.6	2.5	3.0	6.2	7.1	9.2	10.4	15.0	16.7	23.4	26.0		
400	400	400.7	3.2	3.8	7.9	8.9	11.7	13.1	19.1	21.3	29.7	32.9		

Description of 00%	Pipe Series	1	2	3	4	5	
Pressure rating ar 20°C	Bar	-	4	6	10	16	

Manufactured to	: DIN 8061 / 62
Standard length	: 5.8 & 6 meters
Colour	: Gray / Dark Gray
Socket type	: Solvent Weld or Rubber Seal Ring Produced on request


Note:

1. Non-standard lengths and colours can be manufactured to meet customer's exact requirements.

2. All commonly used dimensions normally available, delivery for other sizes on request.

2.3 uPVC Sewer Pipe (gravity)

Nominal	Out	side	DIN 19534					
Size	Diamete	r (X) mm	Wall Thickness (Y) mm					
mm	Minimum	Maximum	Minimum	Maximum				
110	110.0	110.3	3.0	3.5				
160	160.0	160.4	3.6	4.2				
200	200.0	200.4	4.5	5.2				
250	250.0	250.5	6.1	7.0				
315	315.0	315.6	7.7	8.7				
400	400.0	400.7	9.8	11.0				

Manufactured to	: DIN 19534
Standard length	: 5.8 & 6 metres
Colour	: Golden Brown
Socket type	: Solvent Weld or Rubber Seal Ring

Note:

1. All commonly used dimensions normally available, delivery for other sizes on request.

2. A wide range of compatible fittings manufactured to EN 1401 are available.

4.1 PVC Electrical Conduit & Tubing and Utilities Duct

These Standards specify PVC Polyvinyl chloride utilities duct for underground installation for telecommunications and electrical wire & cable. They also specify electrical plastic conduit and tubing for above and underground use.

Nominal Outside **EPT A PVC** EPC 40 PVC **EPC 80 PVC Pipe Size** Dia W/Thick N. Weight W/Thick N. Weight W/Thick N. Weight Mm Inch mm Kgs/m mm Kgs/m mm Kgs/m 1/2" 21.34 1.52 0.155 2.77 0.248 3.73 0.309 3/4" 26.67 1.52 0.197 2.87 0.329 3.91 0.418 1″ 33.4 1.52 0.255 3.38 0.483 4.55 0.614 1 1/4" 3.56 42.16 1.78 0.365 0.652 4.85 0.850 1 1/2" 48.26 2.03 0.468 3.68 0.779 5.08 1.030 2″ 60.32 2.54 0.717 3.91 1.04 5.54 1.430 2 1/2" 2.79 5.16 73.02 0.952 1.65 7.01 2.180 3″ 88.9 3.18 5.49 7.62 2.900 1.310 2.160 4″ 8.56 114.3 3.81 2.00 6.02 3.070 4.260 5″ 141.3 6.55 4.17 9.52 5.910 ------6″ 5.410 10.97 168.28 7.11 8.130 -----8" 219.08 ___ ___ 8.18 8.143 12.70 12.40

NEMA TC-2 ELECTRICAL CONDUIT:

NEMA TC-6 and ASTM F 512 Rigid PVC Duct for Under ground installation:

Nominal	Outside	PVC Typ	e EB 20	PVC Tyj	pe DB 60
Pipe Size	Dia	W/Thick	N. Weight	W/Thick	N. Weight
Inch	mm	mm	Kgs/m	mm	Kgs/m
2"	60.32	1.52	0.463	1.52	0.465
3″	88.90	1.55	0.702	2.34	1.000
4"	114.3	2.08	1.170	3.07	1.650
5″	141.30	2.62	1.710	3.86	2.500
6"	168.28	3.18	2.530	4.62	3.570

 Manufactured to
 : NEMA TC-2, NEMA TC-6 AND ASTM F 512

 Standard length
 : 5.8 & 6 meters

 Colour
 : Gray

 Socket type
 : Solvent Weld

Note:

- To be encased in concrete.

EPC-40 (Electrical Plastic Conduit) EB (Encased Burial) DB (Direct Burial)

1. EPT (Electrical Plastic Tubing)

- To be encased in concrete.
- For Direct burial underground.
- To be encased in concrete.
 - For direct burial underground.
 Plain end.
- 2. Nominal Sizes from $\frac{1}{2}$ in. to 1 $\frac{1}{2}$ in. Nominal Sizes from 2 in.
- One end with solvent weld socket.

4.1 PVC Electrical Conduit & Tubing and Utilities Duct

NEMA TC-8 and ASTM F 512 Rigid PVC Extra Strength for under gr

Rigid PVC Extra Strength	for under gro	und installation
--------------------------	---------------	------------------

Nominal Size	Metric Designators	Average Outside	Туре	EB-35	Туре І	DB-100	Type DB-120		
		Dia	W/Thick	N.Weight	W/Thick	N.Weight	W/Thick	N.Weight	
		mm	mm	Kgs/m	mm	Kgs/m	mm	Kgs/m	
1″	27	33.40					1.52	0.251	
1 1/2"	41	48.26					1.52	0.369	
2″	53	60.32	1.52	0.465			1.96	0.576	
3"	78	88.90	1.93	0.847	2.84	1.160	3.00	1.290	
4"	103	114.30	2.54	1.390	3.68	1.930	3.91	2.050	
5″	129	141.30	3.20	2.090	4.55	2.940	4.85	3.120	
6"	155	168.28	3.020	3.020	5.41	4.170	5.77	4.420	

Manufactured to: NEMA TC-8 ASTM F 512Standard length: 5.8 & 6 metersColour: GraySocket type: Solvent Weld

- Note: 1. EPT (Electrical Plastic Tubing) EPC-40 (Electrical Plastic Conduit)
 - EB (Encased Burial)
 - DB (Direct Burial)
- Nominal Sizes from ½ in. to 1 ½ in.
 Nominal Sizes from 2 in.
- To be encased in concrete.
- For Direct burial underground.
- To be encased in concrete.
- For direct burial underground.
- Plain end.
- One end with solvent weld socket.

TECHNICAL SPECIFICATIONS

rd																			G		» (
	Max. W.P	PSI	1010	770	720	600	540	470	470	440	430		370	360	1	ı				90-91	01:20	
Sch. 120 Dimensions	Min wall thikness	mm	4.318	4.318	5.080	5.461	5.715	6.350	7.620	8.890	11.100		14.275	18.237	1							
Sch.	Min wall	Inch	0.17	0.17	0.2	0.215	0.225	0.25	0.3	0.35	0.437		0.562	0.718								
ions	Max. W.P	PSI	850	690	630	520	470	400	420	370	320	290	280	250	230	230	220	220	220	220		210
Sch. 80 Dimensions	Min wall thikness	mm	3.734	3.912	4.547	4.851	5.080	5.537	7.010	7.620	8.560	9.525	10.973	12.700	15.062	17.450	19.050	21.412	23.800	26.187		30.937
Sch.	Min wall	Inch	0.147	0.154	0.179	0.191	0.2	0.218	0.276	0.3	0.337	0.375	0.432	0.5	0.593	0.687	0.75	0.843	0.937	1.031		1.218
ensions	Max. W.P	PSI	600	480	450	370	330	280	300	260	220	190	180	160	140	130	130	130	130	120		120
Sch. 40 Dimens	Min wall thikness	mm	2.769	2.870	3.378	3.556	3.683	3.912	5.156	5.486	6.020	6.553	7.112	8.179	9.271	10.312	11.125	12.700	14.275	15.062		17.450
Sch.	Min wall	Inch	0.109	0.113	0.133	0.14	0.145	0.154	0.203	0.216	0.237	0.258	0.28	0.322	0.365	0.406	0.437	0.5	0.562	0.593		0.687
meter (mm)		mm	21.336	26.670	33.401	42.164	48.260	60.325	73.250	88.900	114.300	141.300	168.275	219.750	273.050	323.850	355.600	406.400	457.200	508.000		609.600
Outside Diameter (mm)		Inch	0.840	1.050	1.315	1.660	1.900	2.375	2.875	3.500	4.500	5.563	6.625	8.625	10.750	12.750	14.000	16.000	18.000	20.000	22.000	24.000
Nominal	azic		1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	2-1/2"	3"	4"	5"	6"	8"	10"	12"	14"	16"	18"	20"	22"	24"

Where High Standard Pipe Goes, Water Flows!

ASTM Standard 4.1 ASTM D 1785, ASTM D 2665

4

The specification ASTM D 1785-88 covers unplasticised polyvinyl chloride (PVC) pipes, made in SCH-40 and 80 for water distribution and irrigation systems.

The specification ASTM D 1785-88 covers unplasticised polyvinyl chloride (PVC) pipe for Drain, Waste and Vent applications.

Nominal	Outside I (m	Diameter m)	S	ch. 40 Di	mension	IS	Sch. 80 Dimensions				
Size	(,	Min wall thikness		Nominal Weight	Max. W.P	Min wall	thikness	Nominal Weight	Max. W.P	
	Inch	mm	Inch mm		Kg/m	PSI	Inch	mm	Kg/m	PSI	
1/2"	0.840	21.336	0.109	2.769	0.248	600	0.147	3.734	0.309	850	
3/4"	1.050	26.670	0.113	2.870	0.329	480	0.154	3.912	0.418	690	
1"	1.315	33.401	0.133	3.378	0.483	450	0.179	4.547	0.614	630	
1-1/4"	1.660	42.164	0.14	3.556	0.652	370	0.191	4.851	0.850	520	
1-1/2"	1.900	48.260	0.145	3.683	0.799	330	0.2	5.080	1.030	470	
2"	2.375	60.325	0.154	3.912	1.040	280	0.218	5.537	1.430	400	
2-1/2"	2.875	73.250	0.203	5.156	1.691	300	0.276	7.010	2.233	420	
3"	3.500	88.900	0.216	5.486	2.160	260	0.3	7.620	2.910	370	
4"	4.500	114.300	0.237	6.020	3.070	220	0.337	8.560	4.260	320	
5"	5.563	141.300	0.258	6.553	4.277	190	0.375	9.525	6.069	290	
6"	6.625	168.275	0.28	7.112	5.410	180	0.432	10.973	8.130	280	
8"	8.625	219.750	0.322	8.179	8.150	160	0.5	12.700	12.682	250	
10"	10.750	273.050	0.365	9.271	11.855	140	0.593	15.062	18.803	230	
12"	12.750	323.850	0.406	10.312	15.676	130	0.687	17.450	25.870	230	
14"	14.000	355.600	0.437	11.125	18.546	130	0.75	19.050	31.031	220	
16"	16.000	406.400	0.5	12.700	22.891	130	0.843	21.412	38.631	220	
18"	18.000	457.200	0.562	14.275	30.636	130	0.937	23.800	49.920	220	
20"	20.000	508.000	0.593	15.062	35.988	120	1.031	26.187	61.085	220	
24"	24.000	609.600	0.687	17.450	50.080	120	1.218	30.937	86.660	210	

NOTE: ¹. Working pressure indicated in psi is maximum value and is based on water temperature of 23° C.

- 2 Threading of only Schedule 80 pipe is recommended. For threaded pipe working pressure consult our Technical Sales Department Schedule 80 Pipes is supplied in Gray Color.
- 3 ASTM D2665 specifies PVC plastic Drain, Waste and Vent (DWV) pipes. Schedule 40 and DWV Pipe is supplied in White Color.

Maximum Sustain and Burst Pressure Test Conditions for water at 23 C for PVC Pipe

Sustain Pressure

High Standard

Pipe

Burst Pressure

Test PSI	Schedule 120	3250	2470	2300	1720	1510	1420	1380	1190	1160	1170	1090
Pressure Required for Te	Schedule 80	2720	2200	2120	1510	1290	1200	1040	890	062	750	730
Pressur	Schedule 40	1910	1540	1440	1060	890	840	710	560	500	450	420
Test PSI	Schedule 120	2130	1620	1510	1130	066	930	006	780	760	770	710
Pressure Required for T	Schedule 80	1780	1440	1320	066	850	062	680	590	520	490	480
Pressur	Schedule 40	1250	1010	950	069	580	590	470	370	330	300	280
Nominal	Pipe Size	1/2	3/4	4	1 1/2	2	ę	4	Q	Ø	10	12

standard

TECHNICAL SPECIFICATIONS

TECHNICAL SPECIFICATIONS

Ріре														
		Sch. 120	Tolerance	+0.51	+0.51	+0.61	+0.68	+0.76	+1.07	+1.32	07.1+	+2.18	+2.56	+3.05
3	1	Sch.	min.	4.32	4.32	5.08	5.72	6.35	8.89	11.10	14.27	18.24	21.41	25.4
0 & 120	<mark>ness (</mark> mm)	Sch. 80	Tolerance	+0.51	+0.51	+0.53	+0.61	+0.66	+0.91	+1.02	+1.32	+1.52	+1.8	+2.08
olerances For PVC Pipe Schedule 40, 80 & 120	Wall Thickness (mm)	Sch	min.	3.73	3.91	4.55	5.08	5.54	7.62	8.56	10.97	12.70	15.06	17.45
PVC Pipe So		Sch. 40	Tolerance	+0.51	+0.51	+0.51	+0.51	+0.51	+0.66	+0.71	+0.86	+0.99	+1.12	+1.24
erances For		Sch	min.	2.77	2.87	3.38	3.68	3.91	5.49	6.02	7.11	8.18	9.27	10.31
Thickness & T ol	s (mm)	our of the roundness)	Sch. 40 sizes 3" and less Sch. 80 sizes 6" and less	+0.2	+0.25	+0.25	+0.3	+0.3	+0.38	+0.38	+0.89	+1.14	+1.27	+1.52
Outside Diameter Wall Th	Tolerances (mm)	for max. & min. (our	Sch. 40 sizes 4" and over Sch. 80 sizes 8" and over	1	I	I	I	I	I	+ 1.27	+ 1.27	+ 1.9	+ 1.9	+ 1.9
Outside E	Outside	(mm)	max	21.44	26.77	33.53	48.41	60.47	89.10	114.53	168.56	219.46	273.43	324.23
	Out	(m (m	min.	21.4	26.57	33.27	48.11	60.17	88.7	114.07	168.0	218.7	272.67	323.47
		Nominal	Dia	1/2	3/4	Ł	1 1/2	2	n	4	Q	ω	10	12

ASTM D 1785-94

4.2 ASTM D 2241

The specification covers polyvinyl chloride (PVC) Pressre rated pipes (SDR-Series)

	Outside Diameter mm		Wall thickness (mm)											
Nominal			Standard Dimension Ratio (SDR)											
Size inch			41		32.5		26		21		17		13.5	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
1/2"	21.24	21.44											1.57	2.08
3/4"	26.57	26.77							1.52	2.03	1.57	<mark>208</mark>	1.98	2.49
1"	33.27	33.53					1.52	2.03	1.60	2.11	1.96	2.46	2.46	2.97
1 1/4"	42.03	42.29			1.52	2.03	1.63	2.13	2.01	2.52	2.49	3.00	3.12	3.63
1 ½"	48.11	48.41			1.52	2.03	1.85	2.36	2.29	2.80	2.84	3.35	3.58	4.09
2"	60.17	60.47			1.85	2.36	2.31	2.82	2.87	3.38	3.56	4.06	4.47	4.98
3"	88.70	89.10	2.16	2.67	2.74	3.25	3.43	3.94	4.24	4.75	5.23	5.87	6.58	7.37
4"	114.07	114.53	2.80	3.3	3.51	4.01	4.39	4.90	5.44	6.10	6.73	7.54	8.46	9.47
6"	168.00	168.56	4.11	4.62	5.18	5.79	6.48	7.26	8.03	9.00	9.91	11.10	12.47	13.97
8"	218.70	219.46	5.33	5.97	6.73	7.54	8.43	9.45	10.41	11.66	12.90	14.45		
<mark>10</mark> "		273	6.65		8.41		10.5		12.98					
12"		323.9	7.9		9.96		12.5		15.39					
14"		355.6	<mark>8.9</mark> 5				13.7							
16"		406.4	10.1				15.6							
18"		457.2	11.2				17.6							

Pressure rating at 23°C

Pipe - SDR	41	32.5	26	21	17	13.5
Rating - psi	100	125	160	200	250	315
Manufactured to	: ASTM D 224	1-88				

Standard length: 5.8 & 6 metersColour: WhiteSocket type: Solvent Weld

Note:

The pipes will be manufactured as PVC - 1120

Outside Diameter

SDR

=

Minimum Wall Thickness

TECHNICAL SPECIFICATIONS

PVC Pipe Physical Properties

G ENER AL Va	alue	Test Method
Cell Classification 12	2454	A ST M D1784
Maximum Service T emp. 14	40°F	
	/hite, Dark Gr	aγ
		A ST M D792
	.05	A ST M D570
Hardness, Rockwell 11	10 - 120	A ST M D785
Poisson's R atio @ 73°F 0.4	.410	
Hazen-Williams Factor C	150	
MECHANICAL		
Tensile Strength, psi @ 73°F 7,4	,450	A ST M D638
		A ST M D638
		A ST M D790
Flexural Modulus, psi @ 73°F 36	60,000	A ST M D790
Compressive S trength, psi @ 73°F 9,	,600	A ST M D695
Izod Impact, notched, ft-lb/in @ 73°F 0.	.75	A ST M D256
THERMAL		
Coefficient of Linear Expansion (in/in/°F) 2.1	.9 x 10 ⁻⁵	A ST M D696
Coefficient of T hermal Conductivity		A ST M C177
	.5 x 10 ⁻⁴ .02	
	.147	
Heat Deflection Temperature Under Load (264 psi, annealed) 17	70	A ST M D648
Specific Heat, Cal./°C/gm 0.2	.25	A ST M D2766
ELECTRICAL		
Dielectric Strength, volts/mil 1,	,413	A ST M D149
Dielectric Constant, 60Hz, 30°F 3.	.70	A ST M D150
Volume R esistivity, ohm/cm @ 95°C 1.2	.2 x 10 ¹²	A ST M D257
Harvel PVC Pipe is non-electrolytic		
FIRE PERFORMANCE		
Flammability Rating V-	-0	U L-94
Flame Spread Index <1	10	
Flame S pread 0-2	-25	ULC
Smoke Generation 80	0-225	ULC
Flash Ignition Temp. 73	30°F	
Average Time of Burning (sec.) <5	5	A ST M D635
Average Extent of Burning (mm) <1	10	
Burning Rate (in/min) Se	elf Extinguisł	ning
Softening Starts (approx.) 25	50°F	
Material Becomes Viscous 35	50°F	
Material Carbonizes 42	25°F	
Limiting Oxygen Index (LOI) 43	3	A ST M D2863
Clean Room Materials Flammability Test N/	/A	FM 4910

1. Jointing Procedure

Using Solvent Cement

10

High Standard Pipe High Standard Pipe

1. Jointing Procedure

1.2 Using Solvent Cement

1.	Cut the pipe square using a fine pitch and saw.
2.	To remove burns use a medium file. The end of the pipe must be chamfered with a 2mm x 45°
	average chamfer.
3.	The pipe and fitting should be marked. This will help determine proper penetration of pipe into socket.
4.5.6.	Lightly abrade pipe and fitting, then clean the contacting surfaces thoroughly by using a clean rag and
	cleaning fluid.
7.	Apply sufficient Solvent Cement to pipe and fitting using a clean brush. The number of coats needed
	will vary depending on the diameter of pipe and fitting. About one or two coats are usually needed.
8.	Assemble joint immediately. Avoid twisting and hold the pipe and fitting together for 15 seconds for
	1/2"& 60 seconds for 8" pipe. A pipe joining device should be used when pipe with a diameter of 6" or
	more is to be joined. This will ensure full entry of spigod.
9.	Remove excess cement.
10	Close solvent cement tin tightly.
11.	Clean brush after use.
12	DO NOT smoke near can, DO NOT leave can near open flame. AVOID skin contact, DO NOT inhale

Table indicating approximate number of joints whichcan be made with standard size Lubricant, Cleaning Fluid and Solvent Cement:

Nominal Size (inch)	1⁄2 1	1 1/4 - 2	3	4	6	8
* Lubricant 50mg	100	60	40	30	20	10
Cleaning Fluid 500 ml.	300	180	72	45	21	12
Solvent Cement 500 ml.	100	60	25	15	7	4

Notes:

All Solvent Cement must be carefully used in accordance with the instructions on the can. Never dilute with other fluids. Joint cannot be done properly in wet, oily or dirty conditions.

Drying Time will vary according to amount of Solvent Cement applied, ambeint temperature and testing pressure. Temperatures of more than 25°C (76°F) will reduce the jointing time from 3 minutes to approximately 1 minute. Fully rated pressure should not be applied for at least 24 hours.

WARNING: SMOKE TESTING OF uPVC IS RECOMMENDED BUT CARE MUST BE TAKEN AS CERTAIN SMOKE GENERATING DEVICES IN THE MARKET HAVE PRODUCTS OF COMBUTION WHICH ARE DETRIMENTAL TO PLASTIC PIPE WORK.

2. Underground Installation

2.1 General Requirements

Installation to be according to the relevant Codes of practice and to the manufacturer's recommendations.

- The trench should not be opened too far in advance of pipe laying and should be backfilled as soon as possible.
- If pipes are jointed above ground before being laid in the trench, they should be brought to th temperature of the ground and backfill material in order to avoid contraction.
- Excavation should be made under the bell of each pipe so that the entire length of the pipe, except the bell will be supported on the bottom of the trench.
- At any change of direction, anchoring by concrete blocks must be provided. A flexible membrane is recommended between concrete and fitting for protection.
- Mechanical remembers should only used above 300mm from the pipe crown.
- After testing, exposed joints should be filled by pad gravel, compacted and then backfilling should follow.

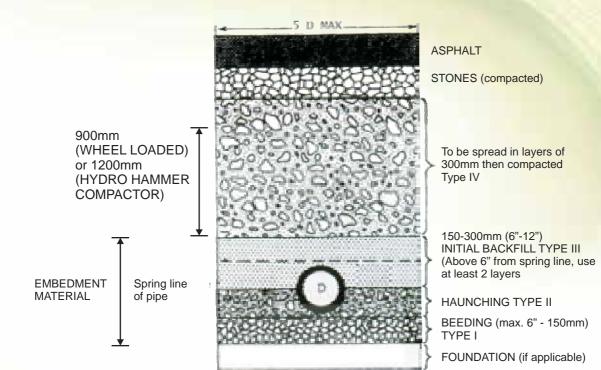
• For water distribution, disinfection of pipes is essential before the system is put into use (also some times during use). The pipe should be flushed (velocity at least 2 ft. per seconds), then refilled with chlorinated water with a dose of 50-100 ppm. At the end of 5 hours, chlorine residual should not be less than ppm.

TECHNICAL SPECIFICATIONS High Standard Pipe High Pipe Linstallation & design guidelines

2. Underground Installation

2.1 General Requirements

This recommended practice describes procedures for installing single wall thermoplastic pipe in excavated trenches. Consideration should be given to allowable deflection due to pipe/soil interactions.


When preparing the trench, certain conditions may be encountered which require special treatment in order to provide adequate bedding and foundation.

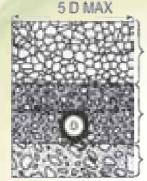
- 1. The trench width below the top of the pipe affects the soil load imposed upon the pipe. Therefore, this width should not be greater than that necessary to provide adequate room for joining the pipe and compacting the hunching and initial backfill.
- 2. Wjem unstable trench walls are encountered, this condition must be stabilized before laying the pipe. To obtain the desired lateral support for pipe laid, the trench width sould be a maximum of 5 pipe diameters, otherwise sheeting, trench box or any other method would be used to control such conditions. in some severe cases well points or under-drain may be used to control excessive ground water conditions.
- 3. The trench should be as narrow as possible. If trench width is greater than 6 pipe diameters, hunching and initial backfill should be compacted to at least 2.5 pipe diameters on either side of the pipe.
- 4. When an unstable trench, botton condition is encountered, it must be stabilized before laying pipe, or an alternative foundation should be utilized. A 150 mm layer of processed stone or gravel, of suitable grade and which the unstable soil will not be penetrate, should be used. This material should be comacted.
- 5. If the trench is over-excavated below a point of 150mm from the bottom of the pipe, but not beyond a point of 300mmm, it would be necessary for this area to be filled with an embedment material and compacted. However, if the trench is more than 300mm deeper than the bottom of the pipe, return fill and ram selected stone-free soil to within 100mm. Then proceed as in para 4.
- 6. Bedding material should be to drace along the entire length of the pipe to be installed. Differential setlement is to be avoided and blocking should not be used to bring the pipe to grade.

2. Underground Installation

2.3 Gravity Sewer

Materials used for bedding, hunching and initial backfill are as follows:

- TYPE IAngular, 6mm to 12mm (1/4" to ½") graded stone. when used for bedding. a depth of 100mm to
150mm is generally sufficient to provide uniformity with little or no compaction due to the nature of
angular particles. Type 1 is also suitable for hunching and initial backfill.
- **TYPE II** Coarse sands and gravels with maximum particle size of 12mm (½"). This type is also suitable for bedding. However, when in use for hunching and initial backfill, place initial backfill in two stages in order to prevent movement of the pep: Stage 1- to the top of the pipe, Stage 2 to at least 150mm over the top of the pipe. Mechanical or hand tamping compaction should be used.
- TYPE IIFine sand and clayey gravel. in bedding this type should be well compacted. In hunching and initial
backfilling it should be used in the same way as Type II but with maximum compaction.
- **TYPE IV** Earth and debris of rocks larger than 20mm (3/4") diameter and other materials. This type is not suitable for bedding, hunching or initial backfill. It is used for the filling itself to cover the trench. A layer of around 500mm (31.5") over the initial backfill before the trench is well loaded and a layer of about 1200mm (47") before utilizing a hydro-hammer during compaction.


Backfilling should be carried out between joints to pressure testing. After testing joint should be covered with TYPE I or TYPE II material, provided particles larger than 12mm (½") have been taken out. Then continue as mentioned above for the rest of the backfill.

2. Underground Installation

2.4 Pressure Pipe

Min. 600 (heavy over head Traffic) 300mm - 450mm is sufficient

BACKFILL

HAUNCHING & INITIAL BACKFILL (75mm+D)

BEDDING (SAND & GRAVEL) 75MM

Requirements for bedding and backfill is practically the same as sewer pipes except for few items:

- a) Haunching and backfill materials are of 12mm (½") particle size of smaller and surround the pipe completely. Type "III" is recommended as materials, also type 1, provided particles are 12mm and smaller.
- b) Sand and gravel containing a significant proportion of fine-grained material, such as silt and clay, should be compacted by hand, preferably by mechanical tamper.
- c) During trench cover and fill up, rocks of 76mm (3") and above must be removed; rolling equipment or heavy tempers should only be used to consolidate the final backfill.
- d) When pipe has been assembled on top of the trench, it is advisable to cool the pipe to ground temperature before backfilling to prevent put-out due to thermal contraction.
- e) When rubber-ring joints are used, suitable anchoring methods should be used to prevent excessive longitudinal or bending movement of the piping: anchor points are at all sudden changes in direction, such as elbows, tees, bends, etc.. It is necessary to withstand the pressure thrust.
- f) If pipes are jointed above ground, they should remain undisturbed for 2 hours before being 'snaked' into the trench. Particular care should be taken to ensure pipes and jointing materials are throughly dry when following the jointing procedure.

In overall use, gravel with fines and sands in the best backfill material for pressure pipe, sand and gravel mixed with silts and clays, in which sand or gravel constitute at least 50% of the mixture, is also suitable.

IMPORTANT NOTE: GRAVEL : Minimum grain size 6.4mm (1/4") SAND : Individual grains visible to the naked eye with maximum particle size of 6.4mm (1/4") SILT : Individual grain difficult to see with naked eye May be slightly plastic. Easily washed from finger. Low dry strength.

TECHNICAL SPECIFICATIONS High Standard Pipe Installation & design-guidelines

3. Design Aspects

3.1 Expansion loops

COMPENSATING FOR THERMAL EXPANSION

Thermoplastics exhibit a relatively high coefficient of thermal expansion (see Relative Properties Chart page 13 and 14)—as much as ten times that of steel. When designing plastic piping systems, expansion of long runs must be considered. Installation temperature versus working temperature or summer to winter extremes must be considered.

One area where extreme temperature variations can occur is in a polypropylene drain application. Temperature in waste systems depends on quantity and temperature of the waste liquids discharged into the system. In general, the quantities of wastes discharged through waste systems from laboratories in educational institutions will be relatively small (a few gallons at a time), while industrial laboratories and processing systems may discharge large quantities of very hot or very cold water.

There are several methods of controlling or compensating for thermal expansion of piping systems: taking advantage of offsets and change of direction in the piping and expansion joints.

- 1. Offsets—Most piping systems have occasional changes in direction which will allow the thermally induced length changes to be taken up in offsets of the pipe beyond the bends. Where this method is employed, the pipe must be able to float except at anchor points.
- 2. Expansion Joints—Expansion joints for pressure applications are generally expensive.

The expansion loops and offset tables as shown on following pages have been generated for elevated temperatures as noted beneath the table. If the change in temperature and working temperatures are lower than those used to derive expansion loop and offset tables, the figures will be conservative. These tables can be generated for any temperature and expansion by using the following equations and the modulus of elasticity and working stress at the given temperature.

Assume the pipe to be a cantilevered beam. Deflection of a cantilevered beam is ΔL

$$\Delta L = \frac{Pl^3}{3EI}$$

Where:

- P = Force Causing the Pipe to Deflect
- *l* = Length of Pipe that is Deflected, in.
- E = Modulus of Elasticity at System Temperature, psi
- I = Moment of Inertia
- e = Coefficient of Thermal Expansion, in./in. °F
- ΔT = Change of Temperature, °F
- ΔL = Change in Length = 12e(ΔT), in.
- L = Length of Straight Pipe Run, ft.

Maximum stress equation:

$$S = \frac{Mc}{Mc}$$

Where:

- S = Working Stress at the System Temperature, psi
- M = Bending Moment, lb. ft. = Pl
- c = Pipe O.D./2, in.
- I = Moment of Inertia

By substituting in maximum stress equation:

$$S = \frac{Pl}{2}$$

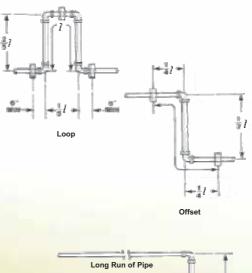
Rearranging:

$$P = \frac{2SI}{lD}$$

Rearranging deflection equation:

$$P = \frac{3EI(\Delta L)}{r^3}$$

Equating both equations:


$$\frac{2SI}{lD} = \frac{3EI(\Delta L)}{l^3}$$

Solving for loop length l:

$$l = \left(\frac{3\text{ED}(\Delta L)}{2\text{S}}\right)^{\frac{1}{2}}$$

FIGURE 4

Expansion Loop and Offset Configurations for Thermoplastics.

TECHNICAL SPECIFICATIONS High Standard Pipe **Installation & design guidelines**

3. Design Aspects

3.2 Flow & Friction

The smooth bores of uPVC pipes have better flow Characteristics than those of metal pipes. The following is the co-efficient of friction given when using the Hazen-Villiams formula:-

100 1.85	Q 1.85	
f = 0.2083 (C)	di 4.87	Q = Flow in gallons/min
		di = inside dia of pipe in inches
		C = constant for inside roughness of pipe
		f = friction head in feet of water / 100 feet of pipe
045	07 450	

up to 315mm C = 137- 150 over 315mm C = 151

Head losses attributable to fittings can be found by applying:

$$h = \frac{Kv^2}{2g}$$

Value of K	h = Head loss (m)
Elbow 90° - 1.00	K = Constant
Elbow 45° - 0.40	V = Velocity of fluid (m/s)
Moulded Bends 90° - 0.75	g = Acceleration due to gravity (m/s^2)
Formed Bends 90° - 0.40	
Formed Bends 45° - 0.20	
Formed Bends 22 1/2° - 0.10	
Tees 90°	
Flow in Line - 0.35	
Flow in line to branch or branch t	o line - 1.20

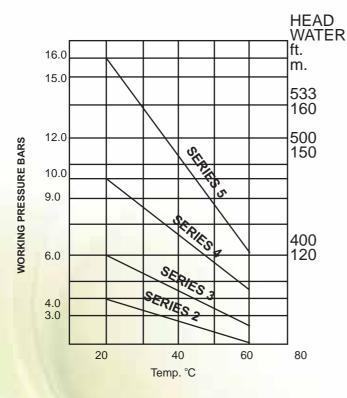
Surge Pressure.

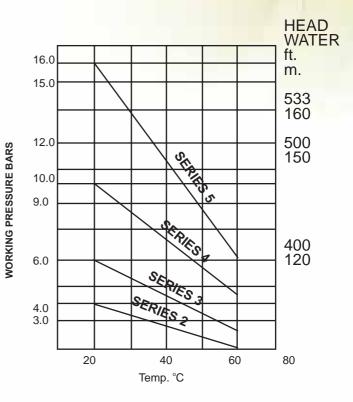
Surge Pressures commonly termed as "Water Hammer" are generated in any piping system when a flowing liquid changes its velocity.

-	4660 V					
P =	2.31g 1 + K (DR - 2)					
	E					
Р	= Surge pressure in PSI					
V	= Maximum Velocity change in Ft/Sec.					
g	= Acceleration due to gravity 32.2 Ft/Sec 2					
K	= Fluid bulk modulus, 3 x 10 ⁵ PSI for water					
DR	= Pipe outside diameter/wall thickness					
Е	= Modulus of elasticity of the pipe in PSI					

3. Design Aspects

3.3 uPVC at Elevated Temperatures


When uPVC pressure pipe operates at temperature other than the emperature at which the pipe is rated 20°C or 23°C, the pressure rating should be established on thermal design factors. Examples given below for guidance only..


Fig 1

PRESSURE TEMP. RELATIONSHIP Ambient Variable Internal Temp 20°C

Fig 2

PRESSURE TEMP. RELATIONSHIP Ambient Temp 20°C Internal Variable

Fig 1

ENT TEMPERATURE OF 40°C a

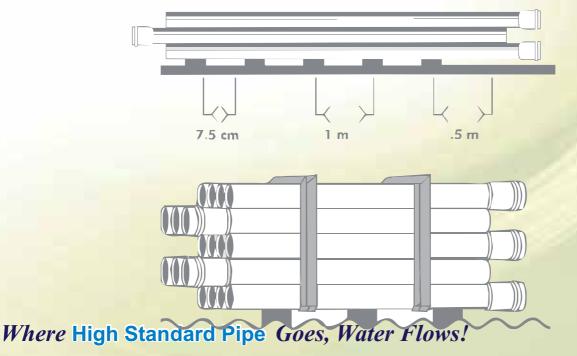
Required working pressure of 6.0 bars use a 10 bar rated pipe.

Fig 1

Required working pressure of 7.0 bars with a liquid temperature of 40°C use a 10 bar rated pipe.

TEMPERATURE CONVERSION

 $^{\circ}F = 9/5^{\circ}C + 32$


 $^{\circ}C = 5/9^{\circ}F - 32$

TECHNICAL SPECIFICATIONS High Standard Pipe Installation & design guidelines

STACKING:

Pipes should be given adequate support at all times. The should not be stacked in large piles, especially under warm temperature conditions. As the bottom pipes may destroy, thus giving rise to difficulty in pipe alignment and jointing. Socketed and spigoted pipes should be stacked in layers with sockets placed at alternate ends of the stack and with the sockets protruding so as to avoid lopsided stacks ad the imparting of a permanent set to the pipes.

For long-term storage, pipe racks should preferably provide continuous support but, if this is not possible, timber supports of at least 75mm (3 in.) Bearing width, at spacing not greater than 1m (3.2 ft.) Centress should be placed beneath the pipes and, if the stacks are rectangular, at twice this spacing at the different classes of pipe are kept in the same racks then the thickest classes must always be at the bottom.

4. Conversion Factors

1 inch (in)	= 2.54 x 10 ⁻² Meters (M)
1 Pound (ib)	= 4.536 x 10 ⁻¹ Kilogram (kg)
1 Newton (N)	= 1.0197 x 10 ⁻¹ Kilopound
1 Pound force (ibf)	= 4.448 Newton (N)
1 Bar (bar)	= 10⁵ Pascal (pa)
1 Bar (bar)	= 10 ⁵ Newton/Meter2 (N/m2)
1 Bar (bar)	= 1.0 ² Kilopound/Centimetre2 (kp/cm2)
1 Bar (bar)	= 14.5 Pounds/Square Inch (psi)
1 Kg force/Centimeter 2 (kgf/cm2)	= 9.806650 x 10 ⁴ Pascal (Pa)
1 Pound force/Inch2 (ibf/in2)	= 6.894757 x 10 ³ Pascal (Pa)
1 Physical Atmosphere (atm)	= 1.01325 Bar (bar)
1 Inch of water (60F)	= 2.4884 x 10 ² Pascal (Pa)
1 Inch of mercury (60F)	= 3.377 x 10 ³ Pascal (Pa)
1 American gallon	= 3.785 Liters
1 British gallon	= 4.546 Liters
1 Joule (J)	= 1.01972 x 10 ⁻¹ Kilogram
1 Joule (J)	= 2.388 x 10 ⁻⁴ Kilo Calorie (kcal)
1 Foot-Pound force (ft-ibf)	= 1.3558 Joules (J)

CERTIFICATE TOV NORD

Continues at Compliance

Investigation, provide and

, PPR, PPRC Pipes, This is to certify that Manufacturing & T esting Requirement of HDPE, PP HDPE, PP , PPR, PPRC, W elded & Cast Molded Fittingsefined in respective DIN, ASTM, ISO, PrEN, & ANSI Standards were verified upon the request of High Standard Pipe for the product of:

Manufacturer of HDPE, PP , PPR, PPRC Pipes and HDPE, PP, PPR, PPRC Welded & Cast Molded Fittings Manufactured by:

HIGH STANDARD PIPE

at: Kabul, Afghanistan.

Complies with the requirements applicable to it as per DIN 8074, 8061/62, 8077, 8078, EN ISO 4427, 4437, 12176-1, 15874-2,3, 15875-2, PrEN 12201-2, ASTM-D1248, D3350-10a, D2447, F714, F477, F480, F679 and ANSI-UL 651-A,B

	Valid up to April 30, 2012
2 Tot 10 years \$ 100	a set where a descent start and supporter
the second se	
H_	
Taxa Internation	
LC0205000/0791273	CHARACTER STOCKED AND ADDRESS OF

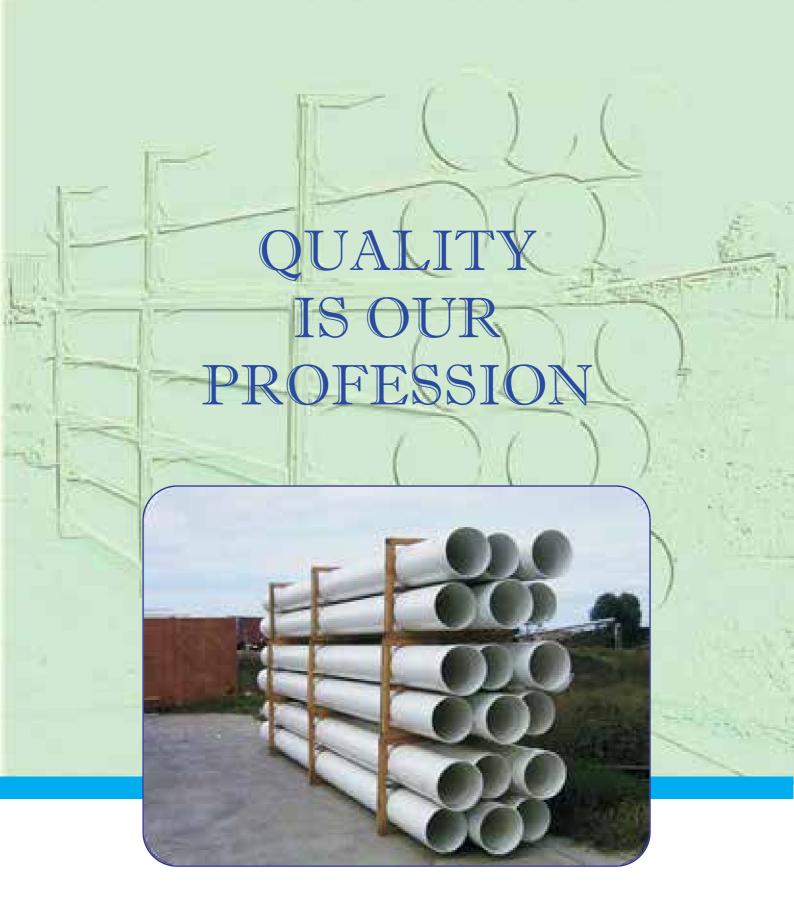
CERTIFICATE TUV NORD

-

Continues of Compliance

This is to certify that Manufacturing & T esting Requirement of PVC, u-PVC Pipes & Cast Moldes defined in respective ASTM, ISO, PrENN, NEMA, BSS, AWW A, ISIRI & ANSI Standards were verified upon the request of High Standard Pipe for the product of:

Manufacturer of PVC Pipes & PVC Cast Molded Fittings


Manufactured by:

HIGH ST ANDARD PIPE

at: Kabul. Afghanistan.

Complies with the requirements applicable to it as per ASTM-D 1783, D 1784, D1785-94, D2665, D2241, D2466, F 439, F437, F1970, PrEN 1452-1,2,3,4,5 ANSI-UL 651-A, B16.5, NEMA-Tc 2,4,8, AWWA-C901, BSS 3505, 3506, 5255, 4514, 4660, 5481, 4504, 4346, DIN 8061, 8062, 19534, 19531, 8079, 8080, 8063, ISIRI 9117, 9118 and 9119

	Valid up to April 30, 2012		
C. Camperton		and the second second	
2416			
10			- Caller
Samuel Revent		1.000	and former
ten interest			
and the second se			
a first other light to			
And in case of the second s			

Head Office & Factory

Kabul - Afghanistan Mob. +93 799 36 10 46 +93 772 25 50 00 +93 786 18 17 27

info@highstandardpipes.com sales@highstandardpipes.com www.highstandardpipes.com